+123 456 7890 info@collegestudy.org
Select Page

Your Perfect Assignment is Just a Click Away

From as Little as \$6

100% Original, Plagiarism Free, Customized to your instructions!     ## Lynn University Statistics Quiz

### Question Description

You want to buy headphones, and for each headphone the store offers 5 brands, 4 colors, 2 wireless types and 3 cord lengths. How many options are available ? Flag this QuestionQuestion 25 pts

John wants to watch a comedy and a drama. He has 10 comedies and 12 dramas to choose from. In how many ways can he do his selection of 1 comedy and 1 drama ?

Flag this QuestionQuestion 35 pts

An ice cream parlor offers 10 flavors of ice cream, 5 toppings and 3 types of cones. How many choices are possible ?

Flag this QuestionQuestion 45 pts

How many license plate codes can be made with 5 consecutive characters, if repetition of characters is allowed ? ( A character is any letter of the English alphabet or any digit ).

Flag this QuestionQuestion 55 pts

A bicycle store carries 7 brands of bicycles, each one in 5 colors, 6 wheel sizes and 2 types of brakes. How many bike choices are available at this store ? Flag this QuestionQuestion 65 pts

According to the ____________, if there are $m$

ways to do an action and $n$

ways to do another action, then both actions can be done in ____________ ways.

$\phantom{\rule{0ex}{0ex}}m\phantom{\rule{0ex}{0ex}}+\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}$

$\phantom{\rule{0ex}{0ex}}m\phantom{\rule{0ex}{0ex}}+\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}$

$m\phantom{\rule{0ex}{0ex}}+\phantom{\rule{0ex}{0ex}}n$

$m\phantom{\rule{0ex}{0ex}}+\phantom{\rule{0ex}{0ex}}n$

${m}^{\phantom{\rule{0ex}{0ex}}2\phantom{\rule{0ex}{0ex}}}\phantom{\rule{0ex}{0ex}}+\phantom{\rule{0ex}{0ex}}{n}^{\phantom{\rule{0ex}{0ex}}2\phantom{\rule{0ex}{0ex}}}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}$

${m}^{\phantom{\rule{0ex}{0ex}}2\phantom{\rule{0ex}{0ex}}}\phantom{\rule{0ex}{0ex}}+\phantom{\rule{0ex}{0ex}}{n}^{\phantom{\rule{0ex}{0ex}}2\phantom{\rule{0ex}{0ex}}}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}$

$m\phantom{\rule{0ex}{0ex}}\cdot \phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}$

$m\phantom{\rule{0ex}{0ex}}\cdot \phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}$

Flag this QuestionQuestion 75 pts

In how many ways can 7 persons be arranged in a row ?

Flag this QuestionQuestion 85 pts

In how many ways can 7 different cars be arranged in a row ?

Flag this QuestionQuestion 95 pts

In how many ways can 8 people line up for concert tickets ?

Flag this QuestionQuestion 105 pts

According to the ____________ the number of arrangements of $n$

different objects is ____________.

$\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}$

$\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}$

$n$

$n$

$n\phantom{\rule{0ex}{0ex}}!$

$n\phantom{\rule{0ex}{0ex}}!$

${n}^{\phantom{\rule{0ex}{0ex}}2\phantom{\rule{0ex}{0ex}}}$

${n}^{\phantom{\rule{0ex}{0ex}}2\phantom{\rule{0ex}{0ex}}}$

Flag this QuestionQuestion 115 pts

In how many ways can 5 students be selected as winners ( with no order or ranking ), out of a group of 12 finalists in a math competition ?

Flag this QuestionQuestion 125 pts

In how many ways can you select a group of 3 students from a class of 20 students ?

Flag this QuestionQuestion 135 pts

You want to prepare a smoothie using 3 ingredients selected from 5 available ingredients. How many options do you have ?

Flag this QuestionQuestion 145 pts

The number of combinations of $n$

elements, taking $r$

at a time, is given by the formula :

$\frac{\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}{\phantom{\rule{0ex}{0ex}}\left(\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}-\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}\right)\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}\cdot \phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}$

$\frac{\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}{\phantom{\rule{0ex}{0ex}}\left(\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}-\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}\right)\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}\cdot \phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}$

$\frac{\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}{\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}$

$\frac{\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}{\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}$

$\frac{\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}{\phantom{\rule{0ex}{0ex}}\left(\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}-\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}\right)\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}$

$\frac{\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}{\phantom{\rule{0ex}{0ex}}\left(\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}-\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}\right)\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}$

$\frac{\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}!}{\phantom{\rule{0ex}{0ex}}\left(\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}-\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}\right)\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}\cdot \phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}$

$\frac{\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}!}{\phantom{\rule{0ex}{0ex}}\left(\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}-\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}\right)\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}\cdot \phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}$

Flag this QuestionQuestion 155 pts

In ____________ the order of the elements is ____________. In ____________ the order of the elements is ____________.

Flag this QuestionQuestion 165 pts

The number of permutations of $n$

elements, taking $r$

at a time, is given by the formula :

$\frac{\phantom{\rule{0ex}{0ex}}\left(\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}-\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}\right)\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}!}{\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}+\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}$

$\frac{\phantom{\rule{0ex}{0ex}}\left(\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}-\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}\right)\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}!}{\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}+\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}$

$\frac{\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}{\phantom{\rule{0ex}{0ex}}\left(\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}-\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}\right)\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}$

$\frac{\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}{\phantom{\rule{0ex}{0ex}}\left(\phantom{\rule{0ex}{0ex}}n\phantom{\rule{0ex}{0ex}}-\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}\right)\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}}$

$n\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}\cdot \phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}$

$n\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}\cdot \phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}$

$n\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}+\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}$

$n\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}+\phantom{\rule{0ex}{0ex}}r\phantom{\rule{0ex}{0ex}}!\phantom{\rule{0ex}{0ex}}$

Flag this QuestionQuestion 175 pts

10 students are competing for 3 prizes ( gold, silver and bronze medals, with no ties ). In how many ways can the prizes be awarded ? Flag this QuestionQuestion 185 pts

Evaluate 10P3.